Coriolis$503909$ - traducción al Inglés
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Coriolis$503909$ - traducción al Inglés

EQUAL TO TWICE THE ROTATION RATE Ω OF THE EARTH MULTIPLIED BY THE SINE OF THE LATITUDE Φ
Coriolis parameter; Coriolis Parameter; Coriolis Frequency; Coriolis coefficient

Coriolis      
n. Caspar de Coriolis (1792-1843), Franse fysicus die effect van Coriolis-effect ontdekt
Coriolis effect         
  • A carousel is rotating counter-clockwise. ''Left panel'': a ball is tossed by a thrower at 12:00 o'clock and travels in a straight line to the center of the carousel. While it travels, the thrower circles in a counter-clockwise direction. ''Right panel'': The ball's motion as seen by the thrower, who now remains at 12:00 o'clock, because there is no rotation from their viewpoint.
  • Schematic representation of flow around a '''low'''-pressure area in the Northern Hemisphere. The Rossby number is low, so the centrifugal force is virtually negligible. The pressure-gradient force is represented by blue arrows, the Coriolis acceleration (always perpendicular to the velocity) by red arrows
  • abbr=on}}.
  • Image from ''Cursus seu Mundus Mathematicus'' (1674) of C.F.M. Dechales, showing how a cannonball should deflect to the right of its target on a rotating Earth, because the rightward motion of the ball is faster than that of the tower.
  • Image from ''Cursus seu Mundus Mathematicus'' (1674) of C.F.M. Dechales, showing how a ball should fall from a tower on a rotating Earth. The ball is released from ''F''. The top of the tower moves faster than its base, so while the ball falls, the base of the tower moves to ''I'', but the ball, which has the eastward speed of the tower's top, outruns the tower's base and lands further to the east at ''L''.
  • Earth and train
  • Coordinate system at latitude φ with ''x''-axis east, ''y''-axis north, and ''z''-axis upward (i.e. radially outward from center of sphere)
  • adj=on}} object as a function of its speed moving along Earth's equator (as measured within the rotating frame). (Positive force in the graph is directed upward. Positive speed is directed eastward and negative speed is directed westward).
  • The forces at play in the case of a curved surface.<br>''Red'': gravity<br>''Green'': the [[normal force]]<br>''Blue'': the net resultant [[centripetal force]].
  • Typhoon Nanmadol]] (left), rotate counterclockwise, and in the Southern hemisphere, low-pressure systems like [[Cyclone Darian]] (right) rotate clockwise.
  • Fluid assuming a parabolic shape as it is rotating
  • Object moving frictionlessly over the surface of a very shallow parabolic dish. The object has been released in such a way that it follows an elliptical trajectory.<br>''Left'': The inertial point of view.<br>''Right'': The co-rotating point of view.
  • Bird's-eye view of carousel. The carousel rotates clockwise. Two viewpoints are illustrated: that of the camera at the center of rotation rotating with the carousel (left panel) and that of the inertial (stationary) observer (right panel). Both observers agree at any given time just how far the ball is from the center of the carousel, but not on its orientation. Time intervals are 1/10 of time from launch to bounce.
  • Cloud formations in a famous image of Earth from Apollo 17, makes similar circulation directly visible
  • Trajectory, ground track, and drift of a typical projectile. The axes are not to scale.
APPARENT OR FICTITIOUS FORCE ON OBJECTS MOVING WITHIN A REFERENCE FRAME THAT ROTATES WITH RESPECT TO AN INERTIAL FRAME
Coriolis Force; Coriolis Effect; Coriolos force; Ferrel's law; Ferrel's Law; Coriolis acceleration; Coriolis Acceleration; Corialis effect; The Coriolis Force; Coriolus force; Coralis effect; Coreolis effect; Coriolus Effect; Ferrell's law; Coriolis motion; Inertial circle; Coriolus effect; Coriolis reflection; Water vortex; Coriolis' theorem; Ferrels Law; Coriolis pseudoforce; Coriolis effects; Coriolis effect; Drain whirlpools; Toilet swirl
n. Coriolis effect (naar naam van Frans wiskundige G. Coriolis), natuurlijk verschijnsel waarin bewegend voorwerp boven de aardbol voorkomt als afwijkend van rechte baan (door draaiing van aarde)

Definición

Coriolis effect
[?k?r?'??l?s]
¦ noun Physics an effect whereby a mass moving in a rotating system experiences a force perpendicular to the direction of motion and to the axis of rotation (influencing, for example, the formation of cyclonic weather systems).
Origin
early 20th cent.: named after the French engineer Gaspard Coriolis.

Wikipedia

Coriolis frequency

The Coriolis frequency ƒ, also called the Coriolis parameter or Coriolis coefficient, is equal to twice the rotation rate Ω of the Earth multiplied by the sine of the latitude φ {\displaystyle \varphi } .

f = 2 Ω sin φ . {\displaystyle f=2\Omega \sin \varphi .\,}

The rotation rate of the Earth (Ω = 7.2921 × 10−5 rad/s) can be calculated as 2π / T radians per second, where T is the rotation period of the Earth which is one sidereal day (23 h 56 min 4.1 s). In the midlatitudes, the typical value for f {\displaystyle f} is about 10−4 rad/s. Inertial oscillations on the surface of the earth have this frequency. These oscillations are the result of the Coriolis effect.